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Metal halide perovskites have gained a lot of attention par-
ticularly  in  recent  years  due  to  their  excellent  optoelectronic
properties  and  simple  scalable  processability[1−3].  One  major
application  of  halide  perovskites  is  solar  cells,  however,  des-
pite  the  power  conversion  efficiencies  (PCEs)  have  already
reached around 25%[4, 5],  the long-term stability issue of such
devices  still  impedes  their  commercialization.  Ionic  liquids,
which contain a large asymmetric organic cation and an organ-
ic  or  inorganic  anion,  have  recently  been  applied  to  per-
ovskite  solar  cells  (PSCs),  not  only  increasing  the  efficiency
but also remarkably improving the long-term stability[6, 7].

While  the  addition  of  ionic  liquids  into  transport  layers
and/or  at  transport  layer/perovskite  interfaces  could  improve
energy  level  alignment  and  passivate  interface  defects[8, 9],
the  addition  of  them  into  perovskite  precursors  might  con-
trol  the  crystallization  dynamics  of  perovskite  films.  For  ex-
ample,  Huang et  al.  incorporated  methylammonium  acetate
(MAAc)  into  the  precursor  solution  of  MAPbI3,  which  formed
an  intermediate  phase  called  MAPbI3–xAcx and  slowed  down
the  reaction  between  MAI  and  PbI2 in  the  solution  to  man-
age  the  crystal  growth[10].  Besides,  the  MAAc  additive  was
found  to  induce  a  crystalline  reconstruction  of  MAPbI3 from
(110)/(002)  planes  to  (112)/(200)  planes[11].  By  precisely  con-
trolling the content of MAAc, PbI2 could preferentially crystal-
lize in a (101) phase, inducing a reconstruction of PbI6 octahed-
ral  framework  during  annealing  and  resulting  in  dense  per-
ovskite films with large grains along (112)/(200) planes.

Similarly,  Sonmegoglu et  al.  employed  an  ionic  liquid,  1-
hexyl-3-methylimidazolium  iodide  (HMII),  to  avoid  the  easy
phase  change  of  FAPbI3 from  black α-phase  to  yellow δ-
phase[12].  Owing  to  the  high  polarity  and  high  boiling-point
of  HMII,  the  liquid  domains  between  neighboring  grains  are
yielded and the activation energy of the grain-boundary migra-
tion is reduced, resulting in a grain coarsening of FAPbI3 crys-
tals  and  micron-sized  grains  with  reduced  parasitic  traps
(Figs.  1(a) and 1(b)).  This  effective  trap  passivation  also  sup-
presses  non-radiative  recombination  and  improves  overall
charge-carrier  dynamics,  leading  to  an  efficiency  of  20.6%
and  an  increase  of  open-circuit  voltage  by  80  mV  compared
with  HMII-free  ones.  Most  importantly,  the  HMII  treatment
also  improves  the  device  stability  under  both  high  humidity
and  thermal  stress,  retaining  >80%  of  their  initial  efficiencies
under 60 ± 10% relative humidity (RH) and ~95% at 65 °C, re-

spectively (Fig. 1(c)).
The  improvement  of  efficiency  and  long-term  stability

were  also  reported  by  Snaith et  al.,  who  incorporated  BMIM-
BF4 into  perovskite  precursors  (Fig.  1(d))[13].  While  BF4

– an-
ions  are  found  mainly  located  at  the  buried  interface,  the
BMIM+ cations  exist  not  only  at  the  buried  interface  but  also
throughout  the  whole  film,  suggesting  an  accumulation  of
ion  pairs  of  BMIM+ and  BF4

– at  the  perovskite/NiO  interface
(Fig.  1(e)).  The  accumulation  of  BMIM+ cations  at  the  surface
and  grain  boundaries  of  the  perovskite  film  could  suppress
the degradation of perovskites and improve the film stability.
As  a  result,  the  PSCs  show  a J–V-derived  efficiency  degrada-
tion of only 5% even after being aged under full-spectrum sun-
light at 70–75 °C for more than 1800 h.

Owing  to  the  easy  decomposition  in  air,  hybrid  per-
ovskites  are  usually  prepared  in  a  dry  or  inert  environment,
which increases the manufacturing cost. By incorporating ion-
ic  liquids with hydrophobic groups,  the humidity sensitive is-
sue of perovskites could be overcome by the molecular encap-
sulation. Recently, Dyson et al.  reported that a self-polymeriz-
ing  hydrophobic  ionic  liquid,  called  1,3-bis(4-vinylbenzyl)im-
idazolium  chloride  ([bvbim]Cl)  (Fig.  1(f)),  can  effectively  im-
prove  the  moisture  resistance  of  perovskites,  enabling  them
to  be  made  under  humid  environment  while  still  maintain-
ing  a  high  device  performance[14].  During  the  crystallization
of  the  perovskite  film,  the  added  [bvbim]Cl  formed  an  insol-
uble and hydrophobic cross-linked polymer via self-polymeriza-
tion,  which  effectively  reduced  the  moisture  sensitivity  dur-
ing  device  fabrication  and  yielded  a  decent  PCE  of  19.9%  for
FAMAPbI3 solar  cells  made  under  ~50%  RH.  Such  ionic  li-
quids  were  also  applied  to  MAPbI3 solar  cells,  which  showed
an improved long-term stability with >80% of their initial per-
formance  maintained  even  after  being  stored  in  air  for  more
than 2900 h (Fig. 1(g)).

Ionic  liquids  can  also  be  used  to  replace  traditional
solvents.  Recently,  Huang et  al.  reported  that  by  substituting
traditional  DMF:DMSO  with  an  ionic  liquid  called  methylam-
ine  formate  (MAFa)  to  prepare  precursor  solutions,  they
made stable α-FAPbI3 films regardless of humidity and temper-
ature[15]. While PbI2@DMF:DMSO thin films have a random ori-
entation  distribution  and  hence  an  energy  barrier  to  form α-
phase  FAPbI3,  the  excellent  vertically  oriented  crystallization
of PbI2@MAFa thin films enabled the quick entering of FA+ in-
to  the interior  crystals  and a  rapid reaction between FA+ and
PbI2 to  produce  stable α-phase  FAPbI3.  Besides,  the  strong
Pb···O  and  hydrogen-bond  interactions  between  residual
MAFa and PbI2 framework prevented the film decomposition.
As  a  result,  the  device  performance  was  dramatically  im-
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proved  (Fig.  1(h)),  showing  a  PCE  of  24.1%.  Moreover,  even
the  unencapsulated  FAMAPbI3@MAFa  cells  could  maintain
80%  and  90%  of  their  initial  efficiencies  for  500  h  at  85  °C
(Fig.  1(i))  and  under  a  continuous  light  stress,  respectively,
demonstrating the great potential of this approach.

The above research and results clearly demonstrate the ef-
fectiveness  of  ionic  liquids  in  performance  enhancement  of
perovskite  solar  cells.  However,  deep  understanding  on  solu-
tion chemistry as well as the effects of residual ionic liquids in
perovskite films is still required in order to design more versat-
ile ionic liquids and further improve the device performance.
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Fig. 1. (Color online) SEM micrographs for FAPbI3 films (a) without and (b) with HMII. (c) Stability curves for the devices aged under ambient condi-
tions (25 °C, 60 ± 10% RH). Reproduced with permission[12], Copyright 2021, Wiley-VCH. (d) The structure for a p–i–n solar cell. (e) ToF-SIMS depth
profiles  for  BMIM-BF4-containing  perovskite  film  on  an  NiO/FTO  glass  substrate.  Reproduced  with  permission[13],  Copyright  2021,  Nature.  (f)
[bvbim]Cl (top) and the PSC (bottom). (g) Device stability study. The cells were stored in air (50% RH, room temperature). Reproduced with permis-
sion[14], Copyright 2021, Wiley-VCH. (h) J–V curves for champion cells based on FAPbI3@MAFa and FAPbI3@DMF:DMSO films. (i) Thermal stability
comparison between two unencapsulated devices under continuous heating at 85 °C in a N2 glovebox. Reproduced with permission[15],  Copy-
right 2021, Science.
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